
WINDOWS PHONE 8 RELEASE NOTES: BUILD 8325.9686

May 11, 2012

Pairing note

What’s new

Known issues and breaking changes

System requirements

Installation and uninstallation

Change history

PAIRING NOTE

 Build 9686 of Windows Phone 8 is qualified to use with build 8325 of the Windows Driver Kit

(WDK) for Windows Developer Preview.

o The full Windows Phone 8 version is: WPMAIN.8325.9686.20120508-1225

o The full Windows version is: fbl_core1_mobile_dev_wp_8325_0_120422-1700

 Windows Phone 8 was tested against the following Qualcomm BSP:

o 8960: Version: Version: 1.30.120409.1120, Release Date: April 9, 2012

 This kit was tested against Visual Studio 11 Beta (Dev11) version 11.0.50214.1 BETAREL.

See System requirements to make sure your system can support the tools and kits. See Installation and

uninstallation for information about the kits and tools that you need to get started.

WHAT’S NEW

The following changes and features are new in this release:

 Phase 1 of the new kit setup experience is now available with this release.

In the Apollo kit folder, you can now select an app called Setup.exe, which installs the following

components:

o Windows Phone Driver Kit

o Windows Phone Adaptation Kit

o Nokia Add-On Kit

o Windows Phone 8 tools such as Test Central, TShell, and Tungsten

o Windows Phone 8 Symbols

To minimize installation issues and ensure that you install the latest version of the components that is

available with this kit release, you must uninstall previous versions of the development kits and the

tools (i.e. you need to do a clean install). See the Installation and uninstallation section for updated kit

and tools setup instructions. There are also some known issues with the new setup so check the Known

issues and breaking changes section for more information.

Setup.exe does not install/uninstall the WDK because this has not yet been integrated so you

need to continue with the same manual install/uninstall steps for the WDK.

 Information about how you can turn off the new UI elements in the kit is provided for reference:

 If you need to release Windows Phone images externally, remove the following line from the

ProductionOEMInput.xml file or from TestOEMInput.xml file:

<OptionalFeature>SHELLSTART8</OptionalFeature>

 8325.9686 Fixed - Code defects and work items.xlsx lists the code defects and feature work items

that were resolved and that are included in this kit release.

 All remaining active Qualcomm dependencies are now being tracked in a Qualcomm BSP database.

Because of this, the Apollo Kit and Qualcomm BSP Scorecard.pdf will no longer be provided as part

of the Windows Phone 8 release notes package.

KNOWN ISSUES AND BREAKING CHANGES

ISSUES AND WORKAROUNDS RELATED TO SETUP.EXE

Summary: You may encounter the following issues when using the new Setup.exe. When possible,

information about a workaround has been provided.

 You may need to uninstall Test Central and TShell before running Setup.exe. To do this, follow these

steps:

1. Click Start, and then point to Control Panel. Point to Programs, and then click Programs

and Features.

2. Find Windows Phone 8 Test Central, click the program name, and then click Uninstall.

3. Follow the same procedure to uninstall TShell.

4. Run Setup.exe after these two programs have been successfully uninstalled.

 You can install Test Central without installing the WDK by following these steps.

1. In Setup.exe, under Select products to install:, expand Windows Phone Driver Kit.

2. First, clear the checkbox Core Components (fre) and Test Central.

3. Then, select Test Central, and then select Core Components (fre).

4. Proceed with the installation.

 You can use the Test Central UI by following these steps:

1. In Setup.exe, under Select products to install:, select Test Shell and proceed with TShell

installation.

2. When finished, open an elevated Visual Studio 11 command line.

3. From the command line, navigate to C:\Program Files (x86)\Windows Phone TShell.

4. Run TestCentral.exe to see the Windows Phone 8 Test Central UI.

CORRECT DEPLOYTEST.EXE PATH CANNOT BE FOUND WHEN RUNNING TEST CASES THROUGH TEST CENTRAL

Summary: Due to Windows Phone 8 bug #156999 ([WPTC] Cannot find correct deploytest.exe path when

running test cases through Test Central), you need to update the registry to make sure you can run test

cases.

To address this issue, use the following workaround:

Mitigation: For a 32-bit machine where the OS is installed on the C: drive, change the path of

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Phone 8 Test

Central\TestPackages\TestToolsDir

From: C:\Program Files\Windows Kits\8.0\

To: C:\Program Files\Windows Kits\8.0\WP8\Tools\bin\i386

Mitigation: For a 32-bit machine where the OS is installed on the C: drive, change the path of

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Windows Phone 8 Test

Central\TestPackages\TestToolsDir

From: C:\Program Files (x86)\Windows Kits\8.0\

To: C:\Program Files (x86)\Windows Kits\8.0\WP8\Tools\bin\i386

Once you have updated the path for the registry key, you can then use TestD to deploy and run the test.

The test tool finds the dependencies from the package and deploys the contents into the device.

If you need to use DeployD to deploy, you must copy the TestTool binaries located in C:\{Program

Files}\Windows Kits\8.0\WP8\Tools\bin\i386 to the C:\{Test_Central_Installation_Folder}\Packages\TestTools

directory.

ANNOUNCEMENT: PARTNERS ARE REQUIRED TO BUILD ALL THEIR PACKAGES USING THE LATEST

PACKAGING TOOLS

Summary: Microsoft now requires all packages to be built using the latest kit and the newest packaging

tools. This ensures compatibility when Microsoft takes the prebuilt packages from OEM partners, which are

used for internal Windows Phone images.

Microsoft will no longer accept packages that were generated using an older version of the kit.

ANNOUNCEMENT: ALL EXECUTABLE FILES NEED TO BE CONFIGURED TO WORK WITH THE SECURITY

CHAMBER MODEL BEGINNING ON MAY 18

Summary: Beginning with a kit release that is currently planned to be released to partners on May 18, all

executable files that run on the phone need to be configured to work properly with security chamber

model of the OS. Executable files that are not configured properly to work with the security chamber

model will fail to start.

This change will affect any executable files written by OEMs, such as services and applications that run in

builds of the full OS. This change will not affect the Microsoft Manufacturing Operating System (MMOS).

For more information about the security chamber model in Windows Phone 8, see the Security model

overview topic Windows Phone 8 Partner Documentation.

Mitigation: When this change takes effect, the following components will run on a phone only if they are

configured as described below:

 Services: OEMs must include services in package files, and each service must be defined in a

<Service> element in the package XML file. For more information, see the Creating services topic in

the Windows Phone 8 Partner Documentation.

 Applications: Applications built using the Windows Phone 8 SDK will be automatically configured to

work properly with security chamber authorization when they are built into XAP files using the SDK

tools in Visual Studio. No further work from OEMs will be required.

 Test applications: Test applications that are transferred directly to a phone by using TShell (rather than

being included in a package) will run only if they are started from the C:\Data\Test or C:\Test folders

on the phone.

SYSTEM REQUIREMENTS

The following table contains the system requirements for Windows Phone 8.

Supported operating systems Windows 7 32-bit (x86) and 64-bit (x64)

You must install all Windows 7 critical updates to

avoid additional issues when using the Windows

Phone 8 kit.

Development environment Visual Studio 11 Beta Professional or higher

If you are developing apps using the Windows Phone 8 SDK, check the SDK release notes to

make sure that your system is compliant with the Windows Phone 8 SDK system requirements.

INSTALLATION AND UNINSTALLATION

UNINSTALLING EARLIER VERSIONS OF DEVELOPMENT KITS

If you are using a different version of the Windows Driver Kit (WDK), Windows Phone Driver Kit (WPDK), or

Windows Phone Adaptation Kit (WPAK) than the ones listed in the Pairing note section of this document,

you first need to uninstall all of the programs associated with these development kits.

The uninstallation sequence is the reverse order of installation. The following list shows the order in which

you must uninstall previous builds of the development kits and any tools or programs associated with

them.

Windows Phone 8 Tools

1. Click Start, and then point to Control Panel. Point to Programs, and then click Programs and

Features.

2. Identify the Windows Phone 8 tool that you need to install, click the program name, and then click

Uninstall.

3. Follow these steps to uninstall another tool.

Microsoft recommends that you always uninstall the earlier version of the Windows Phone

8 tools (such as Test Central, TShell, and so on) and install the version of the tools that came

with the kit that you are using or have installed on your development workstation. This

ensures that the tools are compatible with the kit.

Development kits and associated components

Click Start, and then point to Control Panel. Point to Programs, and then click Programs and Features.

For each program in the following list, click the program name, and then click Uninstall.

1. Windows Phone Adaptation Kit

2. Windows Phone Driver Kit

3. Windows Driver Kit ARM Additions

4. SDK ARM Additions

5. SDK ARM Redistributables

6. Windows Debugging VS Integration

7. Windows Driver Kit

8. SDK Debuggers

9. Windows Software Development Kit for Metro style apps

10. Windows Software Development Kit Redistributables

11. X86 Debuggers and Tools or X64 Debuggers and Tools

12. Windows Software Development Kit

If you installed earlier versions of the kits, you may have a version of one or more of the following

programs installed. If you do, uninstall these:

 Windows Driver Kit Visual Studio 2010 Additions

 Application Verifier x86 External Package or Application Verifier x64 External Package

In Programs and Features, show the Installed On column to view the dates when all

programs were installed. Sorting the programs by their install dates offers an easy way to group

together the programs and tools associated with the kits.

INSTALLING THE TOOLS AND DEVELOPMENT KITS

Visual Studio 11 Beta

 Download and install Visual Studio 11 Beta.

Under Downloads, choose Visual Studio, and then choose Ultimate, Premium, or Professional for

the version you want to download.

Windows Driver Kit (WDK) and Windows Phone 8 kits (WPDK and WPAK)

Download the latest Apollo & WDK.zip packages from the Windows Phone Engineering Partners Connect

site, and then unzip the files to your hard drive.

The WDK and Windows Phone 8 kit release (Apollo & WDK.zip) consists of the following files:

 Apollo.zip – Contains the Windows Phone 8 Adaptation Kit, Windows Phone 8 Driver Kit, and

symbols.

 WDK.zip – Contains the Windows Driver Kit and associated symbols.

 Tools.zip – Contains the tools that currently are not included in Apollo.zip or WDK.zip.

http://go.microsoft.com/fwlink/?LinkId=245679

You must install WDK, WPDK, and WPAK in the sequence specified here.

WDK

1. Unzip the WDK (WDK.zip) file to your hard drive.

2. Open an elevated command prompt, navigate to the directory containing the UninstallKits.ps1 file,

and then run the following command:

Powershell.exe –ExecutionPolicy bypass –file .\UninstallKits.ps1

3. Install WDK in the following order:

a. Run SDK\sdksetup.exe: right-click, and then click Run as administrator.

b. Run WDK\wdksetup.exe: right-click, and then click Run as administrator.

c. Run WOA\WOA_SDK\sdkarmsetup.exe: right-click, and then click Run as administrator.

d. Run WOA\WOA_WDK\wdkarmsetup.exe: right-click, and then click Run as administrator.

e. In an elevated Command Prompt window, browse to the WDK folder, and run cscript

managed.vbs.

f. Reboot your computer.

Windows Phone 8

1. In the Apollo folder, double-click Setup.exe.

2. In the Windows Phone Kits Setup screen, accept the terms in the License Agreement, and then

select Next.

3. Under Select products to install: choose the programs you want to install:

o Debugger Symbols

 Debugger Symbols (fre)

 Debugger Symbols (chk)

o Nokia Add-On Kit

 Add-On Kit (fre)

 Add-On Kit (chk)

o Windows Phone Adaptation Kit

 Test Shell

 Tungsten

 Core Packages (fre)

 Core Packages (chk)

o Windows Phone Driver Kit

 Test Central

 Core Components (fre)

4. Once you have selected the programs you want to install, select Next, and then select Install.

Symbols

To install the available Windows symbols:

1. Browse to the WDK\Public_MobileCore_Symbols\MSI folder, and then run the provided

installers.

2. Add the paths of the symbols to the symbol path.

For example, you can use .sympath inside the debugger to add folder locations. For more

information, see the topic Symbol path in the Windows Phone Partner Documentation.

For a large workgroup, consider creating a symbol server. For more information, see the topic

Symbol stores and symbol servers in the Windows Phone Partner Documentation.

Tools

You install some tools separately from Windows Phone 8 and WDK. To install tools such as VirtEth and

BCDEdit, go to the Tools folder and run the installer for the tool that you want to install.

VERIFYING THE INSTALLATION AND THE CONTENTS OF THE DEVELOPMENT KITS

To verify that all the tools and programs were installed correctly

1. Click Start, and then point to All Programs. Browse to the Windows Kits\Debugging Tools for

Windows (x86) folder.

2. In Control Panel, verify that the programs were installed, and then browse to Windows Phone

Driver Kit and Windows Phone Adaptation Kit.

After successfully installing WDK, WPDK, and WPAK, the subdirectories are listed in the following directory.

During early Windows Phone 8 development, the list of subdirectories may change. The list of

subdirectories in the following table is provided as guidance and should not be used as a definitive list.

Location Directories

Main directory C:\Program Files\Windows Kits\8.0 for 32-bit OS

C:\Program Files (x86)\Windows Kits\8.0 for 64-bit

OS

Subdirectories under C:\Program Files\Windows

Kits\8.0 or C:\Program Files (x86)\Windows Kits\8.0

bin

build

Catalogs

CrossCertificates

Debug

Debuggers

help

Include

Lib

Redist

Remote

Shortcuts

Testing

Tools

Windows Metadata

WP8

CHANGE HISTORY

CHANGES IN THE 8325.9680 BUILD

Pairing note: NT Build version string: fbl_core1_mobile_dev_wp_8325_0_120422-1700, Apollo Build:

WPMAIN.8325.9680.20120501-1525

Windows Phone “Apollo” was tested on the following Qualcomm BSPs:

 8660: Version: Version: 1.30.120409.1120, Release Date: April 9, 2012

The kit was tested against Visual Studio 11 Beta (Dev11) version 11.0.50214.1 BETAREL.

The following changes and features were new for this release:

 Starting with this release of the tools, the package merge tool, PkgMerge.exe, should be used on

packages prior to imaging. For more information about the package merging tool and the

packaging process, see the topics Overview of packaging and Merging packages before imaging in

the Windows Phone “Apollo” Partner Documentation.

This release also contained the following known issues and breaking changes:

 For KDNet over USB, the default values on boot have now changed to busparams=1 for the USB

port on the phone and busparams=2 for the USB port on the debug board. This change is

necessary to achieve full KDNet convergence with Windows 8. No mitigation steps are needed. The

old values busparams=255.3.0 for USB port on the phone and busparams=255.3.1 for USB port on

the debug board still work.

 Partners need to include the correct security model settings to run tests and load files in

C:\Data\Test. This change impacts OEMs that need to run Windows Phone tests.

This change isolates the required settings for executing tests from the SecurityPolicyBvt1 package

into a new package named Microsoft.Phone.Test.BaseOs.SecurityModelTestSupport. In addition,

both the Health and Test SKUs now include a new feature called SECURITYMODELTESTSUPPORT.

This new feature is required for SKUs that need to run tests. If the SKU does not have the feature,

the package needs to be installed through image update on the device after the device boots.

If the new security setting is not included on an image that requires running tests, the test binaries

will not be able to inject binaries from C:\Data\Test into other processes. After chamber

authorization is enforced, binaries will not be able to execute without this change.

Partners must include the correct security model settings, SECURITYMODELTESTSUPPORT, in the

required SKU/image.

 Announcement: All executable files need to be configured to work with the security chamber

model beginning on May 18.

In a future kit release, all executable files that run on the phone need to be configured to work

properly with security chamber model of the OS. Executable files that are not configured properly

to work with the security chamber model will fail to start.

This change will affect any executable files written by OEMs, such as services and applications that

run in builds of the full OS. This change will not affect the Microsoft Manufacturing Operating

System (MMOS). For more information about the security chamber model in Windows Phone

“Apollo”, see the Security model overview topic Windows Phone “Apollo” Partner Documentation.

More information will be provided in the documentation and the kit release notes when this

change takes effect.

CHANGES IN THE 8325.9678 BUILD

Pairing note: NT Build version string: fbl_core1_mobile_dev_wp_8325_0_120422-1700, Apollo Build:

WPMAIN.8325.9678.20120427-1526

Windows Phone “Apollo” was tested on the following Qualcomm BSPs:

 8660: Version: Version: 1.30.120409.1120, Release Date: April 9, 2012

The kit was tested against Visual Studio 11 Beta (Dev11) version 11.0.50214.1 BETAREL.

The following changes and features were new for this release:

 WDK build 8325 contains fixes for the CPU hints for power collapse and a fix for the SB bus bug

that speeds up the 8960 boot time by 40 seconds. The known issue (Power collapse does not work

with Windows build 8311) that was documented in the release notes for 8311.9669 is now fixed.

 This kit contained a change that requires all drivers and kernel-mode components to be digitally

signed. Unsigned kernel-mode components and drivers will fail to load and may cause boot

failures. For more information about signing drivers, see the How to: Sign drivers topic Windows

Phone “Apollo” Partner Documentation.

 Windows Phone properties can now be modified from the Visual Studio UI. Previous versions of

the WPDK required developers to manually edit the VcxProj files to set or modify the Windows

Phone properties such as the BuildWindowsPhone property.

Support has been added to these properties to be displayed from the Project Properties page so

manually editing the VcxProj file is no longer required.

 Bugs in the default values for the <AdditionalDependencies> and<IncludePath> settings have

been fixed so you can now remove the previous overrides required in the VcxProj files. For more

information about these changes, see the following:

o In previous versions of the WPDK, user-mode components that were built with the

WindowsApplicationforDrivers8.0 toolset and had the BuildWindowsPhone flag set to true

linked against the following libraries: KERNEL32.LIB, USER32.LIB, GDI32.LIB, and ADVAPI32.LIB.

Windows Phone does not support these libraries.

In this release, that issue has been resolved and the unsupported libraries have been removed

from the <AdditionalDependencies> list. By default, these components will link to

mincore.lib and all other libraries have been removed from the default list.

If you added any project-specific overrides for <AdditionalDependencies> to work around

the previous issue, please remove these. Components that need to link against additional

libraries supported by Windows Phone still need to append these dependencies to the

<AdditionalDependencies> list.

o In previous versions of the WPDK, the Windows Phone CRT headers were installed to an

incorrect folder. To work around this issue, user-mode components building with the

WindowsApplicationForDrivers8.0 toolset had to add the following lines to the VcxProj file:

<PropertyGroup>

<IncludePath>$(WPDKInstallDir)WP8\Tools\WPE\CRT\inc\CRT;$(IncludePath)</Incl

udePath>

</PropertyGroup>

The install path for the CRT headers has been fixed so the previous workaround should be

removed. The WindowsApplicationForDrivers8.0 toolset now includes the CRT headers and

libraries by default.

This release also contained the following known issues and breaking changes:

 Announcement: All executable files need to be configured to work with the security chamber

model beginning on May 18.

In a future kit release, all executable files that run on the phone need to be configured to work

properly with security chamber model of the OS. Executable files that are not configured properly

to work with the security chamber model will fail to start.

This change will affect any executable files written by OEMs, such as services and applications that

run in builds of the full OS. This change will not affect the Microsoft Manufacturing Operating

System (MMOS). For more information about the security chamber model in Windows Phone

“Apollo”, see the Security model overview topic Windows Phone “Apollo” Partner Documentation.

More information will be provided in the documentation and the kit release notes when this

change takes effect.

CHANGES IN THE 8311.9669 BUILD

Pairing note: NT Build version string: fbl_core1_mobile_dev_wp_8311_0_120409-1700, Apollo Build:

WPMAIN.8311.9669.20120417-1412

Windows Phone “Apollo” was tested on the following Qualcomm BSPs:

 8660: Version 5095, Release date: December 6, 2011

 8960: Version: 1.30.120326.1105, Release Date: March 26, 2012

The kit was tested against Visual Studio 11 Beta (Dev11) version 11.0.50214.1 BETAREL.

The following changes and features were new for this release:

 WDK build 8311 contains a new compiler drop, encryption on KDNet transport, and Windows

changes that unblock Windows Phone “Apollo” features.

 A patched KDNet.dll is no longer required for the kit. The WinDbg issue has been fixed in WDK

build 8311.

This release also contained the following known issues and breaking changes:

 Announcement: Beginning with kit release 8323.xxxx and later, all kernel-mode device drivers

must be signed.

This is only an announcement to prepare partners for the upcoming change. For more information

about signing drivers, see the How to: Sign drivers topic Windows Phone “Apollo” Partner

Documentation.

 Due to some isolated change lists and the changes that Windows build 8311 brought, the system

is not entering low power states based on idle durations present in the system.

These issues will block partners who are working on any idle power management development

work. Please continue to use the previous versions of the kit for idle power management

development work.

 If you use one of the sample OEMInput image files under %ProgramFiles(x86)%\Windows

Kits\8.0\WP8\OEMInputSamples as the basis for your input file, you must move the following

DEBUGGERON optional feature reference from <MSOptionalFeatures> to

<InternalOptionalFeatures>.

<OptionalFeature>DEBUGGERON</OptionalFeature>

 A new KDNet drop is now available as part of the kit. The tools have been updated to reflect the

supported state of the tools and operating system. You must use the latest version of the

debugger so it works with the new KDNet implementation.

 If you are using KDnet on Fluid 8660, the Ethernet debug port now has to be set to

busparams=255.4.0. This change does not impact KDNet over USB.

 Phone-specific GUIDs that were previously added to ksmedia.h have been moved to

ksmedia_phone.h. If you are using these phone-specific GUIDs from ksmedia.h, you must now

include ksmedia_phone.h. If your code does not compile, add the following:

#include <ksmedia_phone.h>

 The WDK toolset adds several libraries, such as kernel32.lib, to the dependency list and the WPDK

fails to remove these libraries. Because these libraries are not supported on Windows Phone

“Apollo”, this dependency will prevent the user-mode component from loading.

To work around this issue, add the following lines to the end of the project file to override the

dependency list:

<ItemDefinitionGroup>

 <Link>

 <AdditionalDependencies>mincore.lib;msvcrt.lib;msvcprt.lib;vcomp.lib</A

dditionalDependencies>

 </Link>

</ItemDefinitionGroup>

 Support for SYSCRT is not available: api-ms-win-core-crt-*.lib libraries are missing from the WPDK.

Microsoft recommends linking user-mode services and driver components against SYSCRT instead

of the full CRT. However, when support for the full CRT was added to the WPDK, the SYSCRT libs

were mistakenly removed. As a result, the SYSCRT libs api-ms-win-core-crt-11.lib and api-ms-win-

core-crt-12.lib are not included in the kit.

To work around this issue, use the WPDK as-is and link against the full CRT. The full CRT .libs are

installed by default to the C:\Program Files (x86)\Windows Kits\8.0\WP8\Tools\WPE\CRT\lib\arm

directory.

The SYSCRT files will be available in future versions of the kit.

 The incorrect folder was added to the IncludePath property for the CRT. As a result, projects using

the CRT and STL will fail due to missing header files. To work around this issue, you needed to add

the following lines to your VcxProj file:

<PropertyGroup>

 <IncludePath>$(WPDKInstallDir)WP8\Tools\WPE\CRT\inc\CRT;$(IncludePath)</In

cludePath>

</PropertyGroup>

CHANGES IN THE 8297.9664 BUILD

Pairing note: NT Build version string: fbl_core1_mobile_dev_wp_8297_0_120330-0756, Apollo Build:

WPMAIN.8297.9664.20120410-1356

Windows Phone “Apollo” was tested on the following Qualcomm BSPs:

 8660: Version 5095, Release date: December 6, 2011

 8960: Version: 1.30.120326.1105, Release Date: March 26, 2012

The kit was tested against Visual Studio 11 Beta (Dev11) version 11.0.50214.1 BETAREL.

The following changes and features were new for this release:

 The kit was tested against a newer version of the 8960 BSP.

This release also contained the following known issues and breaking changes:

 During the first boot after an image is created or has been updated, the driver database is

refreshed and may cause some drivers not to load if they have not been instantiated properly.

Qualcomm and OEM drivers that have been created without INFs need to be modified to work

with this kit.

 This release required a patch for KDNet.dll, which contains an issue that caused WinDbg to hang

during phone bootup. The patch is specific to the kit and was available as a separate download on

Connect.

This issue has been fixed beginning with kit release 8311.xxxx.

 The WDK toolset adds several libraries, such as kernel32.lib, to the dependency list and the WPDK

fails to remove these libraries. Because these libraries are not supported on Windows Phone

“Apollo”, this dependency will prevent the user-mode component from loading.

To work around this issue, add the following lines to the end of the project file to override the

dependency list:

<ItemDefinitionGroup>

 <Link>

 <AdditionalDependencies>mincore.lib;msvcrt.lib;msvcprt.lib;vcomp.lib</A

dditionalDependencies>

 </Link>

</ItemDefinitionGroup>

 Support for SYSCRT is not available: api-ms-win-core-crt-*.lib libraries are missing from the WPDK.

Microsoft recommends linking user-mode services and driver components against SYSCRT instead

of the full CRT. However, when support for the full CRT was added to the WPDK, the SYSCRT libs

were mistakenly removed. As a result, the SYSCRT libs api-ms-win-core-crt-11.lib and api-ms-win-

core-crt-12.lib are not included in the kit.

To work around this issue, use the WPDK as-is and link against the full CRT. The full CRT .libs are

installed by default to the C:\Program Files (x86)\Windows Kits\8.0\WP8\Tools\WPE\CRT\lib\arm

directory.

The SYSCRT files will be available in future versions of the kit.

 The incorrect folder was added to the IncludePath property for the CRT. As a result, projects using

the CRT and STL will fail due to missing header files. To work around this issue, you needed to add

the following lines to your VcxProj file:

<PropertyGroup>

 <IncludePath>$(WPDKInstallDir)WP8\Tools\WPE\CRT\inc\CRT;$(IncludePath)</In

cludePath>

</PropertyGroup>

CHANGES IN THE 8297.9657 BUILD

Pairing note: NT Build version string: fbl_core1_mobile_dev_wp_8297_0_120330-0756, Apollo Build:

WPMAIN.8297.9657.20120403-1543

Windows Phone “Apollo” was tested on the following Qualcomm BSPs:

 8660: Version 5095, Release date: December 6, 2011

 8960: Version: 1.30.120305.0000 (1103.0002), Release Date: March 5, 2012

The kit was tested against Visual Studio 11 Beta (Dev11) version 11.0.50214.1 BETAREL.

The following changes and features were new for this release:

 <SHELLSKIPOOBE> was no longer a required entry in the OEMInput.xml file.

 A new debugging application (debugoutput.exe) and application extension (Decode.dll) were

available with this release. The application, extension, and information on how to run the tool were

available in the Tools folder.

 The instructions for specifying a test certificate for package signing has been moved to the See the

Specifying a test certificate for package signing topic in the Windows Phone “Apollo” Partner

Documentation. If you do not have access to this documentation and need to review the steps, see

the release notes for 8297.9650.

This release also contained the following known issues and breaking changes:

 Timeouts on inter-task and intra-task page navigation commands were enabled as part of the

navigation subsystem. The default timeout value is 60 seconds. If clients do not complete the

operation within this amount of time, the process will be terminated. As Windows Phone “Apollo”

stabilizes, the default timeout will be continually reduced up to only a few seconds. Also, clients

responding to navigation commands with an invalid response will be terminated.

To avoid your processes from being terminated, clients must complete navigation commands

within the timeout period.

 Metabase and its corresponding configuration component are no longer needed and have been

removed from the image. If your configuration service provider tries to retrieve metadata from

Metabase, it will not work.

OEMs can no longer use the Metabase configuration service provider to add or set security access

rights to settings. You need to rely on the Windows Phone “Apollo” security app container model

to retrieve access to settings.

 Some APIs exported by have been refactored. Specifically, the following changes have been made:

o api-ms-win-security-base-l1-1-0.dll was renamed to api-ms-win-security-base-l1-1-1.dll

o api-ms-win-eventing-classicproviderlegacy-l1-1-0.dll was renamed to api-ms-win-

eventing-legacy-l1-1-0.dll

o NeedCurrentDirectoryForExePath APIs were moved from api-ms-win-core-path-l1-1-

0.dll to api-ms-win-core-processenvironment-l1-1-1.dll

For OEMs, no public APIs were removed, but the renamed DLLs require that you re-link against the

new .lib versions.

 Support for SYSCRT is not available: api-ms-win-core-crt-*.lib libraries are missing from the WPDK.

Microsoft recommends linking user-mode services and driver components against SYSCRT instead

of the full CRT. However, when support for the full CRT was added to the WPDK, the SYSCRT libs

were mistakenly removed. As a result, the SYSCRT libs api-ms-win-core-crt-11.lib and api-ms-win-

core-crt-12.lib are not included in the kit.

There are two workarounds for this issue:

o Copy the api-ms-win-core-crt-*.lib files from the previous kit and modify the project file(s) to

manually link against these .libs, or

o Use the WPDK as-is and link against the full CRT. The full CRT .libs are installed by default to

the C:\Program Files (x86)\Windows Kits\8.0\WP8\Tools\WPE\CRT\lib\arm directory.

The SYSCRT files will be available and used by default in future versions of the kit.

 The incorrect folder was to the IncludePath property for the CRT. As a result, projects using the

CRT and STL will fail due to missing header files. To work around this issue, you needed to add the

following lines to your VcxProj file:

<PropertyGroup>

 <IncludePath>$(WPDKInstallDir)WP8\Tools\WPE\CRT\inc\CRT;$(IncludePath)</In

cludePath>

</PropertyGroup>

CHANGES IN THE 8297.9650 BUILD

Pairing note: NT Build version string: fbl_core1_mobile_dev_8297_0_120314-1700, Apollo Build:

WP8_MOBILECORE.8297.9650.20120325-2215

Windows Phone “Apollo” was tested on the following Qualcomm BSPs:

 8660: Version 5095, Release date: December 6, 2011

 8960: Version: 1.30.120305.0000 (1103.0002), Release Date: March 5, 2012

The kit was tested against Visual Studio 11 Beta (Dev11) version 11.0.50214.1 BETAREL.

The following changes and features were new for this release:

 This build contained a new compiler build, encryption on KDNET KDNET transport, and fixes for

several breaking changes.

 New kit and symbol installers were added.

 New input file format for generating images. For more information, see the OEMInput file contents

and How to: Build a phone image topics in the Windows Phone Partner Documentation.

 Beginning with this release, you can now see the new Windows Phone “Apollo” UI when you build

and flash a Windows Phone image.

 If you need to release Windows Phone images externally, you must turn off the new UI

elements. To do this, remove the following line from the ProductionOEMInput.xml file or from

TestOEMInput.xml file:

<OptionalFeature>SHELLSTART8</OptionalFeature>

 Recommendation to group packages by feature area for clarity.

The following example is not an exhaustive list of the types of packages you need to build

your phone image. Please consult with Qualcomm for the full list of packages for a particular

BSP.

<PackageFiles>

<!—Insert OEM/SoC packages here -->

<!-- SV DMA HAL Extension -->

<!-- SV Graphics -->

<!-- Qualcomm WDDM DirectX Drivers -->

<!-- Video Processing Engine (Video Accelerator) -->

<!-- SV Camera -->

<!-- SV Audio -->

<!-- SV RIL -->

<!-- SV Network -->

<!-- OEM Device Identification -->

<!-- SV UEFI\Bootloader -->

<!-- SV\OEM Bus -->

<!-- Hardware Configuration for I2C and SPI -->

<!-- OEM Battery and Power -->

<!-- OEM Security\Crypto -->

<!-- OEM Platform Specific -->

<!-- ACPI Features -->

<!-- Qualcomm Crash Dump Injector Device -->

<!--… -->

</PackageFiles>

This release also contained the following known issues and breaking changes:

 Package Generation now requires catalog files to be signed. To perform this task, a certificate must

be specified for use with pkggen.exe. If a certificate is not provided, usage of pkggen.exe will

return an error message.

Steps on how to specify a signing certificate for pkggen.exe were provided. This information is now

documented in the Specifying a test certificate for package signing topic in the Windows Phone

“Apollo” Partner Documentation.

 Several example SKU files were missing from the main kit and were made available in a separate

.zip file that also went out as part of the release.

 <SHELLSKIPOOBE>, which was marked as an optional feature in the OEMInput.xml file could not

be removed or the phone will not boot. This is no longer a requirement as of build 8297.9657.

 When using the MobileCore production image for the Fluid 8660, the system may crash during

OOBE even when you used the image with <SHELLSKIPOOBE>. To work around this issue, In the

Set date/time screen, make sure that the Send current location to MSFT check box is clear or

not selected, and then reboot the device.

 The incorrect folder was to the IncludePath property for the CRT. As a result, projects using the

CRT and STL will fail due to missing header files. To work around this issue, you needed to add the

following lines to your VcxProj file:

<PropertyGroup>

 <IncludePath>$(WPDKInstallDir)WP8\Tools\WPE\CRT\inc\CRT;$(IncludePath)</In

cludePath>

</PropertyGroup>

 A new input file format will be used with ImgGen.cmd, replacing the UOSInput.xml file that was

used previously. When using the new input files, OEMs specify a set of properties that are used by

the imaging tool to automatically determine what type of image to generate and which Microsoft

packages to include in the image. OEMs also specify a list of all the SV and OEM packages to

include in the image.

If you are creating images, you now have to create an OEMInput.xml file instead of a

UOSInput.xml file.

 For Windows Phone “Apollo”, the language models are now part of optional packages that OEMs

may include at their discretion. Most keyboards are usable without these packages, but they will

not have the advantage of features such as auto-correction and hit-target resizing.

This new model only supports EN-US currently. When more language models are supported,

OEMs must specify the language models to install on the device. This is done during the

generation of the new answer file.

 Support for SYSCRT is not available: api-ms-win-core-crt-*.lib libraries are missing from the WPDK.

Microsoft recommends linking user-mode services and driver components against SYSCRT instead

of the full CRT. However, when support for the full CRT was added to the WPDK, the SYSCRT libs

were mistakenly removed. As a result, the SYSCRT libs api-ms-win-core-crt-11.lib and api-ms-win-

core-crt-12.lib are not included in the kit.

There are two workarounds for this issue:

o Copy the api-ms-win-core-crt-*.lib files from the previous kit and modify the project file(s) to

manually link against these .libs, or

o Use the WPDK as-is and link against the full CRT. The full CRT .libs are installed by default to

the C:\Program Files (x86)\Windows Kits\8.0\WP8\Tools\WPE\CRT\lib\arm directory.

The SYSCRT files will be available and used by default in future versions of the kit.

 In this release of the kit, only SHA-256 signing is supported. When signing the boot critical drivers

using the command line SignTool, specify the /fd sha256 option to specify the SHA-256 file digest

algorithm. For more information about test signing a driver using SignTool, see the MSDN article

Test-Signing a Driver File.

 Preboot crash dump (or offline crash dump) on the Qualcomm 8960 Fluid has been enabled. This

feature collects system information after an abnormal device reset and is intended to be a fallback

mechanism for collecting debug information if the application processor hangs, which would

prevent Windows crash dump generation.

You can disable this feature by setting

HKLM\System\ControlSet001\Control\CrashControl\WpDisablePrebootCrashDump to 1.

 The resolution for Windows Phone bug 80728 (Device shows up as an unrecognized/unknown

device after booting to MainOS (KDNET/USB)) partially includes convergence work necessary to

align with the Windows 8 KDNet extensibility model. As a result, if you are using KDNet Ethernet

on Fluid 8660 you now have to set busparams=2.

 An app chamber is created for configuration using a ProvXML file during device cold boot. This

means that any configuration service provider that is designed to be used in a ProvXML file should

have a capability associated with it, and the capability must be added to the app chamber’s allow

list.

The ProvXML file has been moved to the following location:

Previous location New location

%SystemRoot%\System32\Provisioning\OEM %SystemDrive%\Programs\PhoneProvisioner_OEM\OEM

In addition to this, the $(runtime.coldBootProvxmlOEM) macro is now defined to be used for

the ProvXML folder in the package definition. This change was a necessary part of the update to

the new Windows Phone “Apollo” app chamber-based security model.Some configuration through

ProvXML during cold boot may fail if the security capability is not set properly.

OEMs should put the ProvXML file under the

%SystemDrive%\Programs\PhoneProvisioner_OEM\OEM directory. If the OEM ProvXML does not

work, contact Microsoft to coordinate additional capabilities for the app chamber’s allow list.

 ConfigManager2 has been updated to conform to the Windows Phone “Apollo” security model,

and ConfigManager clients that run in an app container or a service chamber must now include

the ID_CAP_CSP_FOUNDATION capability.

With this change, ConfigManager2 is now more secure and supports recover rollback, which is the

restoration of settings left in an indeterminate state by abnormal process termination or device

reboot. ConfigManager clients running in an app container or a non-TCB service chamber will get

access-denied errors if the proper capabilities are not included.

http://go.microsoft.com/fwlink/?LinkId=246575

OEM apps that call the DMProcessConfigXML function will now run in an app container and

should include the proper capability in their allow list.

CHANGES IN THE 8283.9632 BUILD

Pairing note: NT Build version string: fbl_core1_mobile_dev_8283_0_120216-1700, Apollo Build:

WP8_PD.8283.9632.20120306-1842

Windows Phone “Apollo” was tested on the following Qualcomm BSPs:

 8660: Version 5095

 8960: Version: 1.30.120130 (1102.0005)

The following changes and features were new for this release:

 The version of Visual Studio 11 Beta that you need to install has been clarified in the System

requirements and Installation and uninstallation sections.

 An updated version of Windows Phone Test Central (WPTC) is now available. To install Test

Central, navigate to the Tools folder, and double-click WPTC_MC-arm-fre.msi.

 Windows Phone “Apollo” kit and Qualcomm BSP scorecard (8283.9632 Apollo Kit and Qualcomm

BSP Scorecard.pdf), which included some corrected entries.

This release also contained the following known issues and breaking changes:

 Visual Studio 2010 was linking to a legacy version of CRT. When the WDK moved to Visual Studio

11 Beta, the link was updated to the newer, supported version of the CRT. However, when the

WPDK was moved to Visual Studio 11 Beta, support for the old CRT remained, but the CRT is

incompatible with the STL. Support for the newer CRT and compatibility with the STL will be

available in the next Windows Phone “Apollo” kit.

CHANGES IN THE 8283.9628 BUILD

Pairing note: NT Build version string: fbl_core1_mobile_dev_8283_0_120216-1700, Apollo Build:

WP8_PD.8283.9628.20120229-2156

Windows Phone “Apollo” was tested on the following Qualcomm BSPs:

 8660: Version 5095

 8960: Version: 1.30.120130 (1102.0005)

The following changes and features were new for this release:

 Visual Studio 11 Beta is now required to build kernel-mode drivers and user-mode

components. See Installation and uninstallation for information about where you can download

Visual Studio 11 Beta.

The Windows Phone “Apollo” Partner Documentation released on March 5, 2012 contains relevant

instructions for using Visual Studio 11 Beta to create kernel-mode drivers and user-mode

components.

 Fixed a typo in the Pairing note section of the release notes.

 The Windows Phone Driver Kit (WPDK), Windows Phone Adaptation Kit (WPAK), and Windows

Phone Test Central (WPTC) installers have been renamed.

o WPDK.msi is now WPDK_MC-arm-fre.msi

o WPAK.msi is now WPDK_MC-arm-fre.msi

o WPTC.msi is now WPTC_MC-arm-fre.msi

 The Windows Phone “Apollo” kit now includes the sensor class extension library

wpsensorclxstub.lib, which is required to pick up the exports you need to link to the sensor class

extension. This addresses link errors caused by the missing library file.

This release also contained the following known issues and breaking changes:

 You cannot use the new linker to create ARM images with a subsystem version earlier than 6.02. If

your project specifies a subsystem version, you may see linker warnings and build breaks, as in the

following example:

warning LNK4010: invalid subsystem version number <version>

If you see the linker warning, stop specifying a subsystem version in project files. If you are using

the LINKER_SUBSYSTEM variable in your project to specify the CONSOLE subsystem, use

UMTYPE instead. For example, replace the following:

LINKER_SUBSYSTEM=/SUBSYSTEM:CONSOLE,6.00

With:

UMTYPE=console

Note that the latter statement is case-sensitive.

 The way the new Dev11 compiler (ARM-only) issues warnings about potentially uninitialized

variables is different from the previous compiler. This might result in new compiler warnings and

build breaks.

warning C4701: potentially uninitialized local variable '<identifier>' used

If you see the compiler warning, add initializers to the variable(s) detailed in the warning(s). For

example, change the following:

int * pPointer;

To:

int * pPointer = NULL;

It is good practice to always initialize local variables, especially pointers; unnecessary initialization

usually does not measurably affect generated code quality.

 The FFUTool used to flash devices with .ffu images now enforces a check where the image being

flashed must match the target device. New device images include an embedded device ID and an

on-device file that contains the same ID. These values will be compared by the FFUTool when

flashing to confirm that the image is appropriate for the device. When the ID values do not match,

the FFUTool fails and displays a message. If the ID values match, flashing proceeds normally.

Existing images currently are not provisioned with the correct device ID. If you try to flash a new

image using the new version of FFUTool, an error occurs. The Windows Phone Team has added a –

force option to FFUTool with which you can override the check behavior. If you have a lab

automation setup, this change does not affect that because the lab does not use FFUTool directly.

Using the –force option is necessary during this transition for certain platforms. You may also need

to use the –force option when flashing an earlier image, made before this change, with a newer

version of FFUTool.

In the following flashing scenarios, using the -force flag is safe:

 Dogphone — Device name is either "Nokia..Dogphone." or "Qualcomm

Snapdragon.Snapdragon Product Family.Snapdragon Product."

o Earlier safe image platform ID: "{6ACA3782-8388-4f9c-996C-508FB42AF391}"

o Most recent safe image platform ID: "Nokia..Dogphone."

 8960 Fluid — Device name is either "Qualcomm.MSM8960.MSM8960 Fluid." or "Qualcomm

Snapdragon.Snapdragon Product Family.Snapdragon Product."

o Earlier safe image platform ID: "{39D1D2F2-4EBD-4A8D-8683-A538F9FD0A3A}"

o Most recent safe image platform ID: "Qualcomm.MSM8960.MSM8960 Fluid.”

 8660 Fluid — Name "Qualcomm.MSM8660.MSM8660 Fluid."

o Earlier safe image has a blank ID string. The tool will show "..., , image targets: ."

o Most recent safe image platform ID: "Qualcomm.MSM8660.MSM8660 Fluid."

 A ProvXML file creates two configuration app chamber files during device cold boot:

o One for processing an OEM XML file

o One for processing a Microsoft XML file

This means that configuration service providers (CSPs) that are designed to be used in ProvXML

file should have a capability associated with them, and the capability should be added to the

PhoneProvisioner’s app chamber’s allow list.

Some CSP configuration using ProvXML during cold boot might fail if the security capability is not

properly set. OEMs should use only the CSPs that have capability listed in the phone provisioner’s

OEM app chamber’s allow list when you create the OEM ProvXML file to be used in cold boot.

 The generic USB function class driver (GenericUsbFnClass.sys) will no longer activate the USB bus.

Because Nokia uses the generic USB function class driver, activating the bus is a step that can now

be skipped when using the generic driver, although the current code allows this.

GenericUsbFnClass.sys previously issued the activate bus control code during bootup, which made

the USB available when drivers were loaded. With this change, the generic driver is now more

transparent, and user-mode code now has to activate the bus in the same way that kernel-mode

code does.

 Windows Phone “Apollo” sensor native API users now need to make an API call to run in

connected standby mode. This change does not apply to Windows Runtime (WinRT) or to

managed runtime. For the sensor to run in idle, the sensor needs to call the

SensorEnableIdleOperation function. This function is documented in the Windows Phone

“Apollo” Partner Documentation.

 When going through OOBE on the 8960, you may encounter the following issues:

1. The Time Zone screen does not allow scrolling

2. There are no options in the “What’s your home region?” section.

These issues are minor and do not prevent the completion of OOBE. Windows Phone “Apollo” bug

70882 is tracking this work item.

CHANGES IN THE 8186.9618 BUILD

Pairing note: NT Build version string: fbl_core1_mobile_dev_wp_8186_0_120129-2040, Apollo Build: 9618

Windows Phone “Apollo” was tested on the following Qualcomm BSPs:

 8660: Version 5095

 8960: Version 1102

This release also contained the following known issues and breaking changes:

 A sensor library, wpsensorclxstub.lib, required to link to the sensor class extension, is missing from

the kit. Windows Phone “Apollo” bug 78727 is tracking this work item and the library will be

formally added to the kit in a future release.

 When going through OOBE on the 8960, you may encounter the following issues:

1. The Time Zone screen does not allow scrolling

2. There are no options in the “What’s your home region?” section.

These issues are minor and do not prevent the completion of OOBE. Windows Phone “Apollo” bug

70882 is tracking this work item.

CHANGES IN THE 8186.9612 BUILD

Pairing note: NT Build version string: fbl_core1_mobile_dev_wp_8186_0_120129-2040, Apollo Build: 9612

Windows Phone “Apollo” was tested on the following Qualcomm BSPs:

 8660: Version 5095

 8960: Version 1102

The following changes and features were new for this release:

 This release required an update to the MobileCore symbols.

 Cellular COM API reference has been removed. The cellular interface is being reengineered and

information about a replacement API will be provided in a future release of the Windows Phone

“Apollo” Partner Documentation.

 This release includes new hardware abstraction layer (HAL) timer extensions when you build an

image.

This release also contained the following known issues and breaking changes:

 A sensor library, wpsensorclxstub.lib, required to link to the sensor class extension, is missing from

the kit. Windows Phone “Apollo” bug 78727 is tracking this work item and the library will be

formally added to the kit in a future release.

 When going through OOBE on the 8960, you may encounter the following issues:

1. The Time Zone screen does not allow scrolling

2. There are no options in the “What’s your home region?” section.

These issues are minor and do not prevent the completion of OOBE.

CHANGES IN THE 8186.9604 BUILD

Pairing note: NT Build version string: fbl_core1_mobile_dev_8186_0_120118-1706, Apollo Build: 9604

Windows Phone “Apollo” was tested on the following Qualcomm board support packages (BSPs):

 8660: Version 5095

 8960: Version 1100

The following changes and features were new for this release:

 A new package, Microsoft.HAL.TIMEREXT.spkg, that contains HAL timer extensions was released to

unblock development on 8960 V3 hardware. The package is intended to replace the package

included in the image. For this release, you have to manually add the package to the UOSInput.xml

file to include the contents of the package in an image.

 A preliminary build of Windows Phone Test Central is available with this release. The initial set of

tests is a subset of the Suite 1 – Chassis tests. Preliminary Test Central documentation was also

available in this release.

 A preliminary version of Tungsten, a Windows desktop tool designed to analyze an event trace log

(ETL) collected from Windows Phones, is available in this release. The Tungsten Getting Started

Guide, which contains information about Tungsten and how to use it, is also available.

 A preliminary UEFI battery charging app was added to the kit. The app was available through the

Microsoft.firmware.batt_soc100_950mA.spkg package, which had to be manually added to the

UOSInput.xml file (in this release) to include the contents of the package in an image.

This release also contains the following known issues and breaking changes:

 A sensor library, wpsensorclxstub.lib, which is required to link to the sensor class extension, is

missing from the kit. Windows Phone “Apollo” bug 78727 is tracking this work item and the library

will be formally added to the kit in a future release.

 Using UEFI drop 1060 for 8960 Fluid, if you press and hold the Volume Up button during boot,

FFUapp does not open. This was being tracked by bug 42547, but it has since been resolved as By

Design.

CHANGES IN THE 8175.9592 BUILD

Pairing note: NT Build version string: fbl_core1_mobile_dev_8175_0_120101-1600, Apollo Build: 9592

Windows Phone “Apollo” was tested on the following Qualcomm BSPs:

 8660: Version 5095

 8960: Version 1070

The following changes and features were new for this release:

 A package, Microsoft.BaseOS.CodeIntegrity.spkg, which disables Code Integrity so that you can use

imagines to run unsigned code, is available. The change is temporary until Windows Phone has a

system that can sign binaries in Windows Phone “Apollo”. For this release, you must manually add

the package to the UOSInput.xml file to include the contents of the package in an image.

 A preliminary UEFI battery charging app was added to the kit. The app was available through the

Microsoft.firmware.batt_soc100_950mA.spkg package, which had to be manually added to the

UOSInput.xml file (in this release) to include the contents of the package in an image.

 Storedisk images are no longer provided. Going forward, full flash update (FFU) image generation

is the expected flashing method.

 Preboot crash dump on Qualcomm 8660 Fluid has been enabled. This change was introduced to

help debug hard system hangs. Using the preboot crash dump, you can debug subsystem memory

errors after an abnormal device reset. This feature can be disabled by setting

HKLM\System\ControlSet001\Control\CrashControl\WpDisablePrebootCrashDump to 1.

This release also contained the following known issues and breaking changes:

 When flashing devices using 8175.9592 and the Qualcomm 8960 BSP, the device might fail to boot

with an error and indicate that the device might need to reboot. Analysis of the memory dump will

show a bugcheck of type PANIC_STACK_SWITCH. If you encounter this issue, please contact

Qualcomm for assistance.

 Using UEFI drop 1060 for 8960 Fluid, if you press and hold the Volume Up button during boot,

FFUapp does not open. An active bug that is tracking this issue has been assigned to Qualcomm.

 Some APIs in mincore.lib have moved to other libs, including the following:

1. DevObj APIs have been removed.

2. The RegisterWaitForSingleObjectEx, SetThreadpoolTimerEx, and

SetThreadpoolWaitEx APIs have been removed.

This change was made so that mincore.lib will only export documented APIs on MSDN or on

documented import libs. You should transition to a suitable replacement in mincore.lib for any API

that is missing. If you have no suitable alternative, please contact the Windows Phone team.

CHANGES IN THE 8141.9571 BUILD

Pairing note: NT Build version string: 8141.0.armchk.fbl_core1_mobile_dev.111102-1406, Apollo Build:

9571

Windows Phone “Apollo” was tested against the following Qualcomm BSPs:

 8660: Version 508002, released November 1, 2011

 8960: Version 1.20.111031 (1070), released October 31, 2011

The following changes and features were new for this release:

 Windows Phone “Apollo” CHK and FRE storedisk images.

 FRE MS packages, which can be used to build an FFU image.

 FFU flashing tools compatible with the 8660 and the 8960 Fluid development platforms.

 Matching NT public symbols.

 Matching Apollo symbols for graphics subsystem.

 Matching Mobile SDK.

 The UOSInput.xml file has been fixed to address the image generation error from the previous

release. You no longer have to use the patched UOSInput.xml file that shipped with the previous

release.

 This is the last release expected to include a storedisk OS image. Qualcomm is already shipping

packages for its binaries (or will be shipping these very soon) and partners are expected to use

packages and to build only their own images.

 ChassisTests.zip, which contains DLLs for the available Windows Phone “Apollo” chassis tests.

This release also contained the following known issues and breaking changes:

 Known issue with the debugger not connecting to the device when using KDNet over USB. The

workaround is to use a USB2 connection instead, and then to follow the procedure in the Windows

Phone “Apollo” Partner Documentation topic How to: Set up a USB connection for kernel-mode

debugging.

 There is no built-in support for creating a new kernel-mode driver project in Visual Studio 2010

with this build of the WDK and WPDK. To work around these limitations, open a sample KMDF

project in VS2010, and then customize the project to fit your needs. For more information about

the available sample KMDF projects and where to find them, see KMDF samples. Driver project

files have the .vcxproj extension. For more information about building driver projects, see Building

a Driver and the BuildEnvironment.docx document that accompanies WDK.

 A floppy drive in a development workstation causes an issue with creating the volume tracker list

when you try to build an image. This has been fixed in later builds.

 The provided storedisk images in this release do not show the Windows Phone UI. To interact with

the phone, you can use TShell and other tools. This is not an issue for a FFU images.

 Random bug checks are seen during boot:PHASE1_INITIALIZATION_FAILED(32) on 8960 Fluid

devices. Rebooting the device temporarily fixes the issue.

 OOBE could not be successfully completed on the 8960 Fluid platform. A workaround for this issue

is to press the Back or Start button to leave the OOBE screen, or to reboot the device.

 Using UEFI drop 1060 for the 8960 Fluid, the reset command does not work. Qualcomm is aware

of the issue, and expects to include a fix in a future Qualcomm BSP drop.

 Using UEFI drop 1060 for the 8960 Fluid, holding the camera button during boot does not open

FFUapp. This behavior is inconsistent with the experience on the 8660 Fluid and an active bug has

been assigned to Qualcomm.

CHANGES IN THE 8141.9559 BUILD

Pairing note: NT Build version string: 8141.0.armchk.fbl_core1_mobile_dev.111102-1406, Apollo Build:

9559

Beginning with this release, there are officially two main kits for Windows Phone, with separate installers.

The Windows Phone kits are:

 Windows Phone Driver Kit (WPDK)

 Windows Phone Adaptation Kit (WPAK)

For more information about how to set up your development computer, and to learn more about the

contents of these kits, see Getting started in the WP_Apollo_Documentation.chm file.

This release also contained the following known issues and breaking changes:

http://msdn.microsoft.com/en-us/library/ff544316(VS.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff554644(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff554644(v=VS.85).aspx

 Known image generation issue with the UOSInput.xml file – The “default” XML file results in an

image generation error. Build 8141 includes a patched UOSInput.xml file that you can use to

correct the issue in this build. This has been fixed in later builds.

 An ATL_ASSERT may be triggered when booting. The only workaround is to reboot the device. This

has been fixed and is not an issue in later builds.

 The package generator has been updated to validate package project file extensions. Any existing

packages that use the new schema and that are not using the .pkg.xml extension will cause build

breaks. This change only affects developers who are using package projects with the new schema.

A package is using the new schema if “_NEW_SCHEMA=1” is specified in the corresponding

SOURCES file.

 The OwnerType attribute has been changed from optional to required. Any existing package

projects that are using the new schema need to include this attribute or the build will fail. You

must specify the OwnerType attribute in the package project file, with a value of Microsoft, OEM,

SiliconVendor, or Operator.

CHANGES IN THE 8124.9543 BUILD

Pairing note: NT Build version string: 8124.0.armchk.fbl_core1_mobile_dev.110929-1700, Apollo Build:

8124.9543.20111019-1808

The 8124 build of the WPDK includes the following changes:

 Packaging, imaging, and flashing tools, and related files. These are installed in

%ProgramFiles%\Windows Kits\8.0\WP8\tools\bin\i386 or %ProgramFiles(x86)%\Windows

Kits\8.0\WP8\tools\bin\i386.

 Prebuilt driver packages and OS packages for building images. These are installed in

%ProgramFiles%\Windows Kits\8.0\WP8\mspackages or %ProgramFiles(x86)%\Windows

Kits\8.0\WP8\mspackages.

For more information about the individual files that are new in build 8124, see New Files In Build 8124.txt.

CHANGES IN THE 8117.9531 BUILD

Pairing note: NT Build version string: 8117.0.armchk.fbl_core1_mobile_dev.110919-1700, Apollo Build:

8117.9531.20110930-0947

The 8117 build of the WPDK includes the following changes:

 New kernel-mode headers:

 wpmbbextensiondef.h

 WpAmbient.h

 WpGyro.h

 WpMagnetometer.h

 Removed kernel-mode headers:

 usbfncommon.h was removed because of refactoring. APIs that were in this file are now in

usbfn.h, usbfnclx.h, and usbfnioctl.h.

 New user-mode headers and libraries:

 Rilapitypes.idl

 Rilapi.h

 Rilproxy.lib

CHANGES IN THE 8070.9509 BUILD

Pairing note: NT Build version string: 8070.0.armchk.fbl_core1_mobile_dev.110820-1322, Apollo Build:

8070.9509.20110830-2055

The 8070 build of the WPDK includes the following changes:

 New kernel-mode headers and libraries:

 gnssdriver.h

 hwn.h

 hwnclx.h

 kusbfnclasslib.h

 usbfn.h

 usbfnclx.h

 usbfncommon.h

 usbfnioctl.h

 WpAccelerometer.h

 WpCrDmp.h

 WpOrientation.h

 WpProximity.h

 WpSensors.h

 mshwnclxstub.lib

 Orientation.lib

 wpsensors.lib

COPYRIGHT INFORMATION

This document supports a preliminary release of a software product that may be changed significantly before final

commercial release. This document is provided for informational purposes only and Microsoft makes no warranties,

either express or implied, in this document. Information in this document, including URL and other Internet Web site

references, is subject to change without notice. The entire risk of the use or the results from the use of this document

remains with the user. Unless otherwise noted, the companies, organizations, products, domain names, e-mail

addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real

company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be

inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights

under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or

transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any

purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering

subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the

furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other

intellectual property.

©2012 Microsoft. All rights reserved. Microsoft, Windows, and Zune are trademarks of the Microsoft group of

companies.

