

Please note: an updated version of this TR is available as MSR-TR-2002-87

Sideshow: Providing Peripheral Awareness of Important Information

JJ Cadiz, Gina Danielle Venolia, Gavin Jancke, Anoop Gupta

September 14th, 2001

Technical Report
MSR-TR-2001-83

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Sideshow: Providing Peripheral
Awareness of Important Information

JJ Cadiz, Gina Danielle Venolia, Gavin Jancke, Anoop Gupta
Microsoft Research, Collaboration & Multimedia Group

 One Microsoft Way, Redmond, WA 98052 USA
{jjcadiz; ginav; gavinj; anoop}@microsoft.com

ABSTRACT
A fundamental issue with user interfaces is how to help
users stay aware of information without being overly
intrusive or distracting. In this paper we describe
Sideshow, a peripheral awareness interface designed to help
users stay aware of people and information. We present
data from a field trial of Sideshow where several hundred
employees within our company used Sideshow over a
seven-month period of time. The data indicate that
Sideshow’s design accomplishes the goal of providing
awareness of important information without being overly
distracting.

Keywords
Situational awareness, peripheral awareness, awareness,
computer mediated communication, information overload

1 INTRODUCTION
As the world becomes increasingly asynchronous, digital,
and distributed, keeping track of all the pertinent
information in our lives has become incredibly difficult. As
we work, documents are updated, information on web sites
is modified, databases are changed, and the people we
depend on come and go. It’s largely believed that
maintaining awareness (defined as an “understanding of the
activities of others, which provides a context for your own
activity” [3]) of all this information can be extremely
helpful for productivity, especially for teams that have to
work at different times and in different locations [4].
Sideshow is designed to help people maintain awareness of
important information in their environment. Designing
these types of interfaces involves a myriad of difficult
tradeoffs centering on the fundamental limits of human
attention. Many of these tradeoffs are discussed in previous
literature, which we cover in the next section. We then
discuss our design principles and Sideshow’s design in
section 3. To test our design, we deployed Sideshow within
our company for several months in an ongoing field study.
Section 4 details the results of this study, including data that
evaluate our design and provide insights about possible
future directions for awareness interfaces.

2 RELATED WORK
Researchers have pursued several strategies to address the
problem of how to keep people aware of important
information. We believe these strategies generally fall into

one of three categories: polling, alerts, and peripheral
awareness.

2.1 Polling Interfaces
The first way to help people stay aware of information is to
make it accessible somewhere and allow people to
repeatedly check—or “poll”—the information. If I want to
find out the status of a file, I can open it. If I want to see
my company’s current stock price, I can visit a web site. If
I want to see if one of my co-workers is available to talk, I
can walk over to their office and check.
While this strategy is reliable and straightforward, it has a
few obvious drawbacks. First, polling only provides
information updates when users poll, and because important
events often occur when users are doing other things, it’s
easy to miss critical updates. Second, polling often imposes
a high memory burden on users: not only do they have to
remember to poll, but they often have to mentally compute
what has changed. Third, polling takes a tremendous
amount of time and energy, especially if the information is
spread widely throughout several files, web sites, etc.
Several portal interfaces (like the My Yahoo! Portal page
and Microsoft’s Digital Dashboard) have successfully
addressed this third drawback by creating a single interface
that fetches information from multiple sources and
summarizes it one place, but these interfaces still leave
users to cope with the other failings of polling interfaces.

2.2 Alerts
A serious drawback of polling interfaces is that if a critical
event occurs, users find out only when they poll the
information source, which can be quite a while after the
event has occurred. One solution is to interrupt users when
something important happens. We call any interface that
intentionally interrupts users an alerting interface.
Examples of alerts include fire alarms, reminder windows
that pop up in the middle of your screen (to tell you, for
example, that you have a meeting in 15 minutes), and the
sound that’s played when you receive a new mail message.
Unfortunately, the primary strength of an alert is also its
primary weakness: alerts require that users get interrupted
from their primary task, and studies have highlighted the
harms of these interruptions [2, 12]. In the extreme case,
users can get interrupted by alerts so much that they can’t
get any work done. For this reason, several researchers
have focused on two critical questions for alerting

interfaces: how should we interrupt users, and when should
we interrupt users? Alerts can be delivered via audio or
visual cues, can be delivered in both highly or minimally
intrusive ways, and can be delivered using intelligent
algorithms to determine if the cost of interrupting the user
with an alert is worth the benefit. For example, Horvitz
[10] has examined the use of Bayesian statistics to make
cost/benefit judgments of interrupting users with alerts,
based on the content of the alert and what the user is
currently doing.
However, even if alerts are given at the best possible time
and using the best possible method, by their very nature,
they still must interrupt people. This presents a problem
when trying to use alerts for many types of information,
simply because you may want to stay aware of some
information but never be interrupted by it, and because of
the scalability problem: even if you want to stay aware of
100 pieces of information in one day, you probably don’t
want to receive 100 interruptions, regardless of their timing
and method.

2.3 Peripheral Awareness
The polling and alerting strategies utilize our focal
attention, but the third strategy takes advantage of our
innate ability to stay aware of things in our periphery. This
strategy, peripheral awareness, works by filling users’
peripheral attention with information such that it envelops
them without distracting them. With this method, the goal
is to present the information such that it works its way into
users’ minds without intentional interruptions.
An excellent example is knowing what the weather is like
outside. If you work in a window office, you likely have a
very good idea about the current weather conditions. But
how did that information get into your head? Does the
weather interrupt you every time there’s a change? Do you
consciously look out the window and check the state of the
weather every few minutes? Because the information
persistently resides in your peripheral attention, it works its
way into your knowledge and understanding of the world.
The promise of peripheral awareness has led to several
interfaces and studies. Some research has focused on our
ability to stay aware of things using peripheral audio [18,
19], but the majority of systems have focused on the use of
peripheral vision or a mix of peripheral visual and audio
cues.
One class of displays, ambient awareness displays, use the
tactic of embedding information into users’ surrounding
environment, often without using standard computer
screens. Perhaps the most famous example of an ambient
awareness display is Weiser’s twirling string that kept
people aware of network traffic [22]. More recent work
includes the Information Percolator, which utilizes water
tubes and bubbles to display information [9], and the
ambientROOM project, which has examined various ways

of embeding information into various artifacts in a typical
office environment [11].
Awareness interfaces can also utilize a more traditional
screen-like secondary display [17]. In fact, sometimes the
second display can simply be another monitor hooked up to
the same computer. When studying people who used
computers with multiple monitors, Grudin found that often
the second displays weren’t treated as more workspace, but
as an area where important information could be displayed
peripherally [7].
Several projects have also examined interfaces for
providing awareness of information on users’ main screen.
Although these types of interfaces are more widely
accessible than systems that require secondary displays,
there’s a clear issue of consuming users’ precious screen
real estate. Researchers have approached this issue in a
variety of ways. Several studies have examined the use of
tickers and faders, which have the advantage of being able
to rotate through lots of information without taking up
much space. Of course, a clear drawback is that tickers and
faders are visually dynamic interfaces, and thus there’s been
some debate over how distracting they are [5, 14, 15].
Another approach has been to use interfaces that are gently
blended into the background of whatever is currently on the
screen [6, 8]. Still other techniques have involved simply
creating an application that doesn’t guarantee that it’s
always visible, but that is always running and available on
the desktop [1, 16].

2.4 Using the Strategies Together
McFarlane [12] studied four different methods of
interrupting people with information and found that no
single method was the best. We believe the same is true for
polling, alert, and peripheral awareness interfaces: each has
its place, but the ideal interface will need to utilize all three
strategies at the right times. If someone is trying to call you
on the phone, you don’t want an icon in your peripheral
vision to change gently. Every time a stock you’re
interested in goes up or down, you don’t want a klaxon to
sound. And, of course, people shouldn’t have to check a
web page repeatedly to see if their building is on fire.

E-Mail as a Special Case
Sending updates via e-mail has emerged as one of the most
popular methods for keeping people aware of information,
perhaps because of the ubiquity of e-mail, and perhaps
because of the ease of building a system that sends e-mail.
However, when considering our strategies, e-mail emerges
as a special case because the category it falls into depends
on how people use e-mail. If users always keep e-mail open
on their computer and check every message as soon as it
comes in, then every e-mail is an alert. However, if users
only open their mail once in a while to see what’s
happening, e-mail becomes a place to poll.
Unfortunately, using e-mail as the main interface for
information awareness can result in inbox overloaded. One

difficulty of sending e-mail notifications is knowing when
to send a message, and the result can be an inbox cluttered
with notifications, some of which are no longer valid. E-
mail interfaces are typically designed for person-to-person
communication, not information awareness, and thus using
e-mail for this purpose quickly creates problems.

3 SIDESHOW
Sideshow is an awareness interface with the goal of helping
people stay aware of large amounts of dynamic information
without overloading or distracting them. It resides on a
user’s primary display and utilizes peripheral awareness.
We’ve also built Sideshow to support easy polling of
information and have explored some use of alerts.
When designing an interface such as Sideshow, there are
several design tradeoffs to consider. To describe Sideshow,
first we’ll outline our design principles and then we’ll
describe the interface.

3.1 Design Principles
The first design principle we followed when designing
Sideshow was make it always present. Because we wanted
Sideshow to utilize peripheral awareness, it was clear that
we had to design the interface such that it was always
present in the user’s periphery when they were working on
their computer.
Second, because we were building an interface that would
always be in users’ peripheral vision, our second principle
was to minimize motion. Most of us have probably had the
annoying experience of trying to read a web page with an
animated advertisement on it. Because of the way our
perceptual systems work, unexpected motion in our
periphery tends to be highly distracting, thus we designed
Sideshow to be as visually calm as possible.
The third design principle we followed was make it
personal. There have been several high-profile commercial
attempts at information awareness displays, two of the most
visible being PointCast (now called Infogate) and
Microsoft’s ActiveDesktop. However, these commercial
attempts haven’t become overwhelming successes. We
believe these interfaces failed not necessarily because of
their design, but because they focused on generic
information: information that’s useful to everyone, but only
minimally. Typical examples are news, weather, and stock
prices. Thus, we made sure that Sideshow focused on
information that was personally relevant and important for
people to stay aware of.
Because of this focus on personally relevant information,
and because no single company or organization can
possibly own—or even know about—all the different types
of information that people need to stay aware of, our fourth
principle was to make Sideshow extensible.
Our fifth design principle was support quick drill-down and
escape. Because of limited space in users’ periphery and
the potentially large number of items users want to stay
aware of, peripheral awareness displays can’t provide much

detail about information the user is watching. However,
information isn’t very useful unless it’s detailed, thus we
designed Sideshow so that it would be very easy for users to
drill-down to get highly detailed information. We also
designed the drill-down mechanism to be easy for people to
“escape” and return to what they were working on, in hopes
of minimizing the costs of context switching.
Our sixth and last design principle was make it scalable.
It’s our feeling that people want to stay aware of a large
number of information sources, thus we needed to design
our interface to handle dozens of items.

I have a meeting in 23 minutes

There are 6 unread and 10 total
messages in my inbox.

2 of my buddies are online, 4 are
online but unavailable, and 19 are

offline.

Anoop is online (indicated by the icon

and the picture of Anoop looking at
me).

Gavin is online but unavailable
(indicated by the icon and the picture

of Gavin looking away from me).

Current information on how the stock
market is doing.

There are 90 bugs in my bug

database. 6 are high priority, 19 are
medium priority, and 61 are low

priority.

Current 5-day forecast for my region.

Snapshot of the traffic on the bridge I
have to use to get home.

Map of the status of all the traffic in

my region.

I can click the new button to add
tickets to my sidebar.

Figure 1: The Sideshow sidebar. This sidebar resides on
one edge of the user’s desktop and always remains visible.
The sidebar is filled with items we call tickets. Each ticket
displays a small summary of information. If users want to
find out more, they can hover their mouse over a ticket,
which brings up a tooltip with detailed information.

3.2 A Sidebar That’s Always Present
Sideshow is implemented as a sidebar (see Figure 1). This
sidebar, by default, is always present on one edge of the
user’s screen (much like the Windows taskbar). Users can
also configure the sidebar to automatically hide itself or to
allow itself to be covered by other windows. By default,
the sidebar is 55 pixels wide. Inside the sidebar are several
high-level summaries of important information in a user’s
world. We call these summaries “tickets.”

3.3 Getting More Information
If users want to find out more information about a ticket,
they can hover their mouse over it and a “tooltip grande”
appears (Figure 2). We chose the name “tooltip grande”
because the window behaves like a tooltip (it appears when
you mouse over a ticket and disappears when you move the
mouse away), but these tooltips differ from standard
tooltips in two ways. First, they’re rather large (to provide
lots of detailed information), and second, they’re
actionable: users can manipulate information inside the
tooltip window or click to get even more detailed
information. For example, in the tooltip for my mail inbox,
I can open, forward, reply to, or delete any message.
If users want even more information than the tooltip grande
provides, they can double-click a ticket to bring up the
source of the information. For example, double-clicking
the Inbox ticket opens the user’s inbox; double-clicking the
MSFT stock ticket opens up a web page at

moneycentral.msn.com with detailed information about
Microsoft’s stock price.

3.4 Minimizing Motion & Exploring Alerts
Sideshow minimizes motion primarily by changing very
few pixels when information is updated. For example,
updating the information in several of the tickets involves
just changing a few numbers, which affects relatively few
pixels. For the more graphical tickets, updates only occur
once every five or fifteen minutes, and if the images need to
change, the changes typically aren’t dramatic.
While we’ve taken great care to design tickets that are
minimally distracting, as noted in section 2.2, people
sometimes want to be interrupted by important information.
Thus, we implemented alerts for two ticket types (see
Figure 3). First, when new mail arrives in one of the inbox
tickets, a window summarizing the new mail fades in and
then fades out after a few seconds (users can also configure
the window to persist until they explicitly dismiss it). The
“My Bugs” ticket has a similar window that fades in and out
any time a software bug of interest is added or modified. In
both cases, users can click on these windows to read the
new e-mail messages or see the changes to the bugs.

3.5 Making Sideshow Personal
As mentioned in section 3.1, a major focus of Sideshow
was creating tickets that helped people stay aware of
information that was critical to their work. While we
developed some generic tickets as proofs of concept (stock,
news, weather, etc.), our focus was on information that
people often said they “lived” in. For example, in our
company, Outlook is the main calendaring and e-mail tool,
and people often say they “live” in Outlook. As another
example, RAID is our company’s internal tool for reporting
and tracking bugs, and people often say they “live” in
RAID. For these reasons, we spent considerable time
developing tickets to watch Outlook Calendars, Outlook
mail folders, and RAID bugs.
In addition, because many people work on highly
interdependent teams, we also spent considerable time
developing tickets that help people stay aware of their co-
workers (similar to the interface described in [21]). As
shown in Figure 1, individual co-workers can be placed on
the sidebar and identified by static images; these images
indicate whether a person is currently available or not. The
tooltip for the person shows their calendar for the day (if

Figure 2: Two examples of tooltip grande windows. When
users hover their mouse over the inbox ticket, the tooltip
grande shows the contents of the inbox (top). Users can click
messages to open them. When users hover their mouse over a
person on the sidebar, they can see the person’s calendar (if
the person has made it available) and the history of when the
person has been available and unavailable today using
Windows Messenger (displayed as a color bar on the right of
the calendar).

Figure 3: Two types of alert windows provided by
Sideshow. When new mail arrives or when a bug of interest
changes, a window fades in with a summary of the information.
Users can click on the alert window to get more information.

they’ve enabled access to it), as well as when the person has
been available and unavailable today according to Windows
Messenger (Figure 2).

3.6 Making Sideshow Extensible
Although creating excellent Outlook and RAID tickets were
a good step toward making Sideshow as useful as possible,
we knew that we couldn’t create all the tickets that would
allow people to use Sideshow to watch all the important
information in their world. Similar to the problems outlined
by MacLean et al. in [13], several of the divisions within
our company have custom tools and processes that made
writing tickets for each of these divisions impossible. Thus,
we followed a model similar to MacLean’s: we provided
the necessary tools and distribution processes such that one
motivated person in a division could write incredibly
valuable tickets and then distribute them to their division.
First, we released a Sideshow SDK (software development
kit) that allowed people to author tickets using HTML or
C++. Second, we designed Sideshow tickets such that they
could be distributed as files, which enabled people to send
tickets by e-mail or post them on web pages (Figure 4).

3.7 Supporting Scalability
We implemented several features to support large numbers
of tickets on the sidebar. First, tickets can be placed in
groups and these groups can be collapsed or expanded.
When a group is collapsed, its tooltip grande shows the
tickets inside it, and users can mouse over the tickets in the
tooltip grande to bring up another tooltip grande with more
information about the ticket. Second, tickets resize
themselves based on how much space is available on the
sidebar: as long as there’s enough space, tickets display
themselves at their ideal size. However, once the sidebar
fills up, tickets start shrinking until they reach their smallest
possible size (ideal size and smallest possible size are
determine for each ticket by the ticket developer). If

another ticket is added once all tickets have reached their
smallest possible size, the tickets at the bottom scroll off
into an overflow area that’s accessible by scrolling the
sidebar. Scroll buttons (and a button that allows users to
peek at the tickets in the overflow area via a tooltip) only
appear on the sidebar when the mouse is over it (not shown
in Figure 1).

4 FIELD STUDY
Although we designed Sideshow with several good
principles in mind, many practical questions remained.
Would people surrender ~50 pixels from the edge of their
screens to run Sideshow? Would Sideshow be distracting?
What were the tickets we needed to develop to make
Sideshow as useful as possible? Would the mechanisms we
designed for getting more information work well for users?
We sought to answer these questions by deploying
Sideshow within our company.

4.1 Methodology
Sideshow was first presented to our company during an
internal demo festival held in January 2001. Afterward,
approximately 200 people installed Sideshow. Although
we made no effort to publicize Sideshow after this demo
festival, word of Sideshow spread throughout the company,
and by August 2001, we had nearly 2000 installations.
We collected data about Sideshow using two methods.
First, we instrumented Sideshow such that many user
interactions (adding tickets, bringing up tooltips for tickets,
changing the width of the sidebar, etc.) were logged.
Second, during August 2001, we released two surveys. The
first survey was given to 860 people who were currently
using Sideshow and asked about a variety of Sideshow’s
features. 309 people responded (a 36% response rate). The
second survey was given to 698 people who had used
Sideshow for more than three days but hadn’t used
Sideshow in the prior two weeks. This survey asked a small
number of questions about why people stopped using
Sideshow. 178 people responded (a 26% response rate).
275 people who downloaded Sideshow but did not use it for
at least 3 days were not surveyed.
Before presenting results from this field study, it’s
important to note a few things. First, all of these data are
from a self-selected user population. None of these users
were randomly selected as participants. Second, all of these
users work for our company and arguably have above
average computer skills. However, these data are from
several hundred users, some of whom used Sideshow for
several months. In addition, our user population is quite
diverse. Our users include administrative assistants, sales
staff, finance staff, software developers, product designers,
lawyers, product support professionals, and vice presidents.
Furthermore, because our company has field offices
throughout the world, these data are from people in over 20
countries throughout North America, South America,
Europe, Asia, and Africa.

Figure 4: A mock-up of a ticket (circled) on a web page.
Tickets can be placed on web pages, and users can drag these
tickets to their sidebar to watch different types of information (an
eBay auction, in this case).

It’s also important to note that we iterated
extensively on Sideshow’s design
throughout this field study. While the basic
concept of having a sidebar with tickets has
remained the same, many bugs have been
fixed and many features have been refined
over the course of the study, which is typical
for an iterative design project.

4.2 Is Sideshow Useful?
Perhaps the most basic question for a new
UI concept like Sideshow is whether it’s
useful. Although there are many ways to
measure usefulness, because Sideshow takes
up precious screen real estate and people had no incentive
to use it, we look to adoption as a measurement of
usefulness.
According to our usage logs, 1907 people installed
Sideshow during our seven-month field study. We
classified these users according to how much they used
Sideshow: people who used Sideshow at least once in the
past 14 days were considered current users, people who
had used Sideshow for at least 3 days but hadn’t used it in
the past 14 days were considered light users, and everyone
else (people who used Sideshow for less than 3 days) was
considered a one-time user.
According to this classification, of the 1907 people who
installed Sideshow, 238 (12.5%) are one-time users, 681
(35.7%) are light users, and 988 (51.8%) are current users
(these numbers are slightly different from the numbers
described in section 4.1 for the surveys because the usage
analyses were performed at different times). Because
people installed and used Sideshow at varying times, it’s
also important to look at the number of days that people ran
Sideshow on their desktop. One-time users used Sideshow
a median of 1 day (average of 13 days), light users used
Sideshow for a median of 21 days (average of 37.2 days),
and current users used Sideshow for a median of 33 days
(average of 55.4 days).
Given these numbers, it seems safe to say that the majority
of people thought Sideshow was a useful concept. When
examining data from the people who had stopped using
Sideshow, the most often cited reason for stopping was
simply that the prototype was too buggy and not stable
enough (see Figure 5). In fact, our biggest concern—that
people wouldn’t be willing to give up screen space to run
Sideshow—was not supported. Only 8% of people cited
this as the main reason they stopped using Sideshow (15%
listed it as a secondary reason).
Furthermore, when we asked current users of Sideshow
whether they thought it was worth giving up the screen
space to run Sideshow, users’ median response was 4
(“agree”) out of a 5-point scale (see Table 1). In addition,
although we allowed people to set their sidebars to
disappear when the mouse wasn’t over it (“autohide”), only

13% of current and light users chose to enable this feature.
In fact, on average, people adjusted their sidebar to take up
7.3% of their screen space.
Overall, there was a very high level of excitement about
Sideshow. Many people asked when it would become a
product, and at the end of the summer, interns asked if there
was any way they could take it with them back to college.
Just a few examples of positive feedback include:

“I love Sideshow” (5 respondents)
“I think it ROCKS!”(3 respondents)
“It is an extremely helpful tool. Just running the mouse
pointer over the ticket so it expands makes life so much
easier than having to keep all different programs and
windows open and browsing them.”
“Let me know when I can send it to my friends and
family!!!”

4.3 What makes Sideshow useful?
To determine what makes Sideshow useful, we examined a
variety of usage and survey data. First, we asked all the
people who were currently using Sideshow what the main
reason was they continued to use it (Figure 6). 26% said
they continued to use Sideshow because it made it easy to
work with their calendar and e-mail. 20% cited other
reasons, which mostly had to do with how Sideshow made
it easy for them to stay aware of a variety of information.
In particular, users seemed to like how Sideshow allowed
them to stay aware of important information without
switching away from their primary task. Users wrote:

“I like the quick glance to see amount of mail, bug
status, traffic and other info without having to open 10
others apps to get the same info.”
“I love the way it allows me to track lots of information
at the same time. I like so many tickets it's impossible to
pin one down.”
“It's not just one ticket that makes it good, it's the fact
that all the important info is presented in the smallest
possible space.”

4.4 Is Sideshow Distracting?
One of the most significant worries of awareness
researchers is creating a distracting interface. While we

Figure 5: The reasons people said they stopped using Sideshow. People could
select one primary reason and multiple secondary reasons.

weren’t able to perform any controlled lab studies to
measure how distracting Sideshow is, we did ask questions
about intrusiveness in our surveys.
First, we asked current users if they thought Sideshow was
distracting. The median score was 2 (“disagree”). Second,
we asked people who stopped using Sideshow whether they
stopped because it was distracting. Only 6% said the main
reason they stopped using Sideshow was because it was
distracting, and only 10% cited it as a secondary reason.
Finally, we looked at what people thought about what we
believe is the most distracting part of Sideshow: the alert
windows that pop up when new mail arrives. The median
response to the question, “I like being notified by Sideshow
as soon as mail arrives” was 4.0 (“agree”). The companion
question, “Sideshow’s e-mail notifications often distract me
from doing important work” received a median score of 2.0
(“disagree”). When asked about the e-mail alerts, users
wrote:

“That's what I like best about Sideshow. Being able to
see who the new mail is from and determine whether I
should read it now or not...”

 “Love it - being able to do a quick scan to see whether
it is an urgent email or not really helps in my role and
saves the time previously taken checking Outlook when
the new mail icon appears in the tool tray at the bottom
of the screen.”
“The notification is useful because it prevents me
having to go to Outlook as often. Most messages I can
read later. Although the popup is distracting, I find its
usefulness is worth it.”
“One of the best features in Sideshow”

4.5 Areas for Improvement
In addition to all the positive feedback about Sideshow,
users also provided lots of areas in which we could improve
Sideshow. Several people made comments about wanting
tickets that were more personalized for them. For example,
the majority of the employees in our company are located in
one region, and many of our tickets were focused on
information in that region (traffic, weather, etc.). Many
people outside this region expressed a strong desire for
tickets that watched information that was relevant to their
own region. Making Sideshow faster and more tolerant to
times when the network wasn’t available were also frequent
suggestions, but these issues have more to do with
Sideshow being a research prototype and less to do with
Sideshow’s core concepts.

5 CONCLUDING REMARKS & FUTURE DIRECTIONS
Sideshow continues to be used by hundreds of employees in
our company. Potential future research directions include
studies involving users outside our company, and studies of
Sideshow on mobile devices. Tang’s Awarenex project
[20] examines interfaces and architectures for supporting
awareness of important information on Palm and RIM
Blackberry devices, and we believe this is a fruitful
direction for Sideshow as well. We’re specifically
interested in putting Sideshow on mobile devices not just to
provide people with awareness of their important
information while away from the desktop, but also because
mobile devices can serve as secondary peripheral displays
when docked next to a user’s primary screen.
We’re also interested in methods to help users customize
their sidebars without lots of effort. For example, if
Sideshow notices that you visit a document that’s often
edited by other people, it could place a ticket to watch the
document in a “recommended tickets” group on the sidebar.
Similarly, if a ticket’s information hadn’t changed in quite a
while, it could suggest that the ticket be deleted.
However, for now, we believe that our experience with
Sideshow provides two lessons for the research community.
First, users are willing to give up a portion of their screen
space for a peripheral awareness application. Second,
spending time to make sure peripheral awareness
applications focus on information that’s important to users
is critical for success. Peripheral awareness displays should
be able to be personalized in such a way that they help users

Table 1: Selected questions from the survey of people currently
using Sideshow (n = 309).

Question
1 = Strongly Disagree

5 = Strongly Agree

Media
n Avg Std

Dev

Sideshow is distracting 2.0 2.3 0.9

Sideshow interrupts me when I’m
trying to do other work. 2.0 2.2 0.9

It’s worth giving up the screen space
to run Sideshow. 4.0 3.8 0.9

Sideshow grabs my attention at the
right times. 4.0 3.6 0.8

Sideshow helps me stay aware of
information that’s critical for me to
keep track of.

4.0 3.7 0.8

I like being notified by Sideshow as
soon as new mail arrives. 4.0 4.1 1.0

Sideshow’s e-mail notifications
often distract me from doing
important work.

2.0 2.3 0.9

Figure 6: The main reasons people continue to use Sideshow.

stay aware of information that’s critical to them, and that
will often mean building a system that goes beyond
watching stock prices, news stories, and weather forecasts.

ACKNOWLEDGMENTS
We’re very appreciative of Mike Boyle for developing the
first Visual Basic prototype of Sideshow while he was an
intern with us during the summer of 2000. We’re also
extremely grateful for the hundreds of people throughout
our company who ran Sideshow and sent us bug reports,
design suggestions, and words of encouragement.

REFERENCES
1. Atkins, D., Boyer, D., Handel, M., Herbsleb, J., Mockus, A.,

Wills, G. The Product Development Collaboratory at Lucent
Technologies.
http://www.bell-labs.com/org/11359/colab_prod/

2. Cutrell, E., Czerwinski, M., and Horvitz, E. (2001).
Notification, Disruption, and Memory: Effects of Messaging
Interruptions on Memory and Performance. Proceedings of
the IFIP TC.13 Conference on Human Computer Interaction
(Interact 2001).

3. Dourish, P., and Bellotti, V. (1992). Awareness and
Coordination in Shared Workspaces. Proceedings of the ACM
Conference on Computer Supported Cooperative Work
(CSCW 1992).

4. Dourish, P., and Bly, S. (1992). Portholes: Supporting
Awareness in a Distributed Work Group. Proceedings of the
ACM Conference on Human Factors in Computing Systems
(CHI 1992).

5. Fitzpatrick, G., Mansfield, T., Kaplan, S., Arnold, D., Phelps,
T., and Segall, B. (1999). Instrumenting and Augmenting the
Workaday World with a Generic Notification Service Called
Elvin. Proceedings of 6th European Conference on Computer
Supported Cooperative Work (ECSCW 1999).

6. Greenberg, S., and Rounding, M. (2001). The Notification
Collage: Posting Information to Public and Personal Displays.
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2001).

7. Grudin, J. (2001). Partitioning Digital Worlds: Focal and
Peripheral Awareness in Multiple Monitor Use. Proceedings
of the ACM Conference on Human Factors in Computing
Systems (CHI 2001).

8. Harrison, B., Ishii, H., Vicente, K., and Buxton, W. (1995).
Transparent Layered User Interfaces: An Evaluation of a
Display Design to Enhance Focused and Divided Attention.
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 1995).

9. Heiner, J., Hudson, S., and Tanaka, K. (1999). The
Information Percolator: Ambient Information Display in a
Decorative Object. Proceedings of the ACM Symposium on
User Interface Software and Technology (UIST 1999).

10. Horvitz, E., Jacobs, A., and Hovel, D. (1999). Attention-
Sensitive Alerting. Proceedings of the Conference on
Uncertainty and Artificial Intelligence (UAI 1999).

11. Ishii, H., and Ullmer, B. (1997). Tangible Bits: Towards
Seamless Interfaces between People, Bits, and Atoms.
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 1997).

12. McFarlane, D. (1999). Coordinating the Interruption of
People in Human-Computer Interaction. Proceedings of the
IFIP TC.13 Conference on Human Computer Interaction
(Interact 1999).

13. MacLean, A., Carter, K., Lovstrand, L, and Moran, T. (1990).
User-Tailorable Systems: Pressing the Issues with Buttons.
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 1990).

14. McCrickard, D., Catrambone, R., and Stasko, J. (2001).
Evaluating Animation in the Periphery as a Mechanism for
Maintaining Awareness. Proceedings of the IFIP TC.13
Conference on Human Computer Interaction (Interact 2001).

15. Maglio, P., and Campbell, C. (2000). Tradeoffs in Displaying
Peripheral Information. Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI 2000).

16. McCrickard, D. (1999). Maintaining Information Awareness
with Irwin. Proceedings of the World Conference on
Educational Multimedia/Hypermedia and Educational
Telecommunications (ED-MEDIA 1999).

17. Miller, T., and Stasko, J. (2001). The InfoCanvas: Information
Conveyance through Personalized, Expressive Art. Extended
Abstracts from the ACM Conference on Human Factors in
Computing Systems (CHI 2001).

18. Pacey, M., and MacGregor, C. (2001). Auditory Cues for
Monitoring a Background Process: A Comparative
Evaluation. Proceedings of the IFIP TC.13 Conference on
Human Computer Interaction (Interact 2001).

19. Pedersen, E., and Sokoler, T. (1997). AROMA: Abstract
Representation of Presence Supporting Mutual Awareness.
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 1997).

20. Tang, J., Yankelovich, N., Begole, J., Van Kleek, M., Li, F.,
and Bhalodia, J. (2001). ConNexus to Awarenex: Extending
Awareness to Mobile Users. Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI
2001).

21. Tollmar, K., Sandor, O., and Schomer, A. (1996). Supporting
Social Awareness @ Work, Design, and Experience.
Proceedings of the ACM Conference on Computer Supported
Cooperative Work (CSCW 1996).

22. Weiser, M., and Brown, J. (1996). Designing Calm
Technology. PowerGrid Journal, v1.01, July 1996. (see
http://nano.xerox.com/hypertext/weiser/calmtech/
calmtech.htm

